中小学教育资源及组卷应用平台
专题4.5 因式分解(全章直通中考)(综合练)
一、单选题(本大题共10小题,每小题3分,共30分)
1.(2023·湖南益阳·中考真题)下列因式分解正确的是( )
A. B.
C. D.
2.(2023·河北·中考真题)若k为任意整数,则的值总能( )
A.被2整除 B.被3整除 C.被5整除 D.被7整除
3.(2023·浙江杭州·中考真题)分解因式:( )
A. B. C. D.
4.(2011·广西南宁·中考真题)多项式因式分解的结果是( )
A.x(x﹣4)+4 B.(x+2)(x﹣2) C.(x+2)2 D.(x﹣2)2
5.(2021·甘肃兰州·中考真题)因式分解:( )
A. B.
C. D.
6.(2021·广西贺州·中考真题)多项式因式分解为( )
A. B. C. D.
7.(2020·四川眉山·中考真题)已知,则的值为( )
A. B. C. D.
8.(2019·台湾·中考真题)若多项式可因式分解成,其中、、均为整数,则之值为何?( )
A. B. C. D.
9.(2022·湖北荆门·中考真题)对于任意实数a,b,a3+b3=(a+b)(a2﹣ab+b2)恒成立,则下列关系式正确的是( )
A.a3﹣b3=(a﹣b)(a2+ab+b2)
B.a3﹣b3=(a+b)(a2+ab+b2)
C.a3﹣b3=(a﹣b)(a2﹣ab+b2)
D.a3﹣b3=(a+b)(a2+ab﹣b2)
10.(2021·广西玉林·中考真题)观察下列树枝分叉的规律图,若第个图树枝数用表示,则( )
A. B. C. D.
二、填空题(本大题共8小题,每小题4分,共32分)
11.(2023·辽宁丹东·中考真题)因式分解: .
12.(2014·黑龙江绥化·中考真题)分解因式: .
13.(2021·山东菏泽·中考真题)因式分解: .
14.(2011·江西南昌·中考真题)分解因式: .
15.(2023·湖北黄石·中考真题)因式分解: .
16.(2023·广东深圳·中考真题)已知实数a,b,满足,,则的值为 .
17.(2023·山东·中考真题)已知实数满足,则 .
18.(2023·湖南·中考真题)已知实数m、、满足:.
①若,则 .
②若m、、为正整数,则符合条件的有序实数对有 个
三、解答题(本大题共6小题,共58分)
19.(8分)(2021·黑龙江大庆·中考真题)先因式分解,再计算求值:,其中.
20.(8分)(2023·浙江·中考真题)观察下面的等式:,,,,….
(1)尝试:___________.
(2)归纳:___________(用含n的代数式表示,n为正整数).
(3)推理:运用所学知识,推理说明你归纳的结论是正确的.
21.(10分)(2023·浙江嘉兴·中考真题)观察下面的等式:
(1)写出的结果.
(2)按上面的规律归纳出一个一般的结论(用含n的等式表示,n为正整数)
(3)请运用有关知识,推理说明这个结论是正确的.
22.(10分)(2022·安徽·中考真题)观察以下等式:
第1个等式:,
第2个等式:,
第3个等式:,
第4个等式:,
……
按照以上规律.解决下列问题:
(1)写出第5个等式:________;
(2)写出你猜想的第n个等式(用含n的式子表示),并证明.
23.(10分)(2021·重庆·中考真题)如果一个自然数的个位数字不为,且能分解成,其中与都是两位数,与的十位数字相同,个位数字之和为,则称数为“合和数”,并把数分解成的过程,称为“合分解”.
例如,和的十位数字相同,个位数字之和为,
是“合和数”.
又如,和的十位数相同,但个位数字之和不等于,
不是“合和数”.
(1)判断,是否是“合和数”?并说明理由;
(2)把一个四位“合和数”进行“合分解”,即.的各个数位数字之和与的各个数位数字之和的和记为;的各个数位数字之和与的各个数位数字之和的差的绝对值记为.令,当能被整除时,求出所有满足条件的.
24.(12分)(2020·四川内江·中考真题)我们知道,任意一个正整数x都可以进行这样的分解:(m,n是正整数,且),在x的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称是x的最佳分解.并规定:.
例如:18可以分解成,或,因为,所以是18的最佳分解,所以.
(1)填空:;;
(2)一个两位正整数t(,,a,b为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求的最大值;
(3)填空:
①;
②;
③;
④.
中小学教育资源及组卷应用平台
试卷第1页,共3页
21世纪教育网(www.21cnjy.com)
参考答案:
1.A
【分析】利用提公因式法,公式法对各项进行因式分解,即可求解.
【详解】解:A、,故本选项正确,符合题意;
B、,故本选项错误,不符合题意;
C、,故本选项错误,不符合题意;
D、,故本选项错误,不符合题意;
故选:A
【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.
2.B
【分析】用平方差公式进行因式分解,得到乘积的形式,然后直接可以找到能被整除的数或式.
【详解】解:
,
能被3整除,
∴的值总能被3整除,
故选:B.
【点睛】本题考查了平方差公式的应用,平方差公式为通过因式分解,可以把多项式分解成若干个整式乘积的形式.
3.A
【分析】利用平方差公式分解即可.
【详解】.
故选:A.
【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.
4.D
【分析】根据完全平方公式进行因式分解即可.
【详解】解:.
故选:D.
【点睛】本题主要考查了公式法分解因式,理解完全平方公式是解答关键.
5.C
【分析】先提公因式,进而根据平方差公式因式分解即可.
【详解】
故选C.
【点睛】本题考查了综合运用提公因式和公式法因式分解,掌握因式分解的方法是解题的关键.
6.A
【分析】先提取公因式,再利用完全平方公式将括号里的式子进行因式分解即可
【详解】解:
故答案选:A.
【点睛】本题考查了提公因式法和公式法进行因式分解.正确应用公式分解因式是解题的关键.
7.A
【分析】根据,变形可得:,因此可求出,,把和代入即可求解.
【详解】∵
∴
即,
∴求得:,
∴把和代入得:
故选:A
【点睛】本题主要考查了完全平方公式因式分解,熟记完全平方公式,通过移项对已知条件进行配方是解题的关键.
8.A
【分析】首先利用十字交乘法将因式分解,继而求得,的值.
【详解】解:利用十字交乘法将因式分解,
可得:.
,,
.
故选A.
【点睛】本题考查十字相乘法分解因式的知识.注意型的式子的因式分解:这种方法的关键是把二次项系数分解成两个因数,的积,把常数项分解成两个因数,的积,并使正好是一次项,那么可以直接写成结果:.
9.A
【分析】根据立方差公式即可求解.
【详解】解:∵a3+b3=(a+b)(a2﹣ab+b2)恒成立,
将上式中的b用-b替换,整理得:
∴a3﹣b3=(a﹣b)(a2+ab+b2),
故选:A.
【点睛】本题考查了运用公式法分解因式,熟练掌握立方差公式是解题的关键.
10.B
【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律,代入规律求解即可.
【详解】解:由图可得到:
则:,
∴,
故答案选:B.
【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答.
11.
【分析】
先提取公因式,再根据平方差公式进行因式分解即可.
【详解】解:,
故答案为:.
【点睛】本题主要考查了综合提公因式和公式法因式分解,解题的关键是正确找出公因式,熟练掌握平方差公式.
12.
【分析】原式提取公因式,再利用完全平方公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
【详解】解:原式
.
故答案为:.
13.
【分析】先提取公因式,后采用公式法分解即可
【详解】∵
=-a
=
故答案为: .
【点睛】本题考查了因式分解,熟记先提取公因式,后套用公式法分解因式是解题的关键.
14.
【详解】解:先提取公因式2后继续应用完全平方公式分解即可:
原式,
故答案为:.
15.
【分析】
将整式变形含有公因式,提取即可.
【详解】
解:
故答案为:.
【点睛】
本题考查了整式中的分解因式,提取公因式是常用的分解因式的方法,解题的关键是找到公因式.
16.42
【分析】首先提取公因式,将已知整体代入求出即可.
【详解】
.
故答案为:42.
【点睛】此题考查了求代数式的值,提公因式法因式分解,整体思想的应用,解题的关键是掌握以上知识点.
17.8
【分析】
由题意易得,然后整体代入求值即可.
【详解】解:∵,
∴,
∴
;
故答案为8.
【点睛】本题主要考查因式分解及整体思想,熟练掌握利用整体思维及因式分解求解整式的值.
18.
【分析】
①把代入求值即可;
②由题意知:均为整数, ,则再分三种情况讨论即可.
【详解】解:①当时,,
解得:;
②当m、、为正整数时,
均为整数,
而
或或,
或或,
当时,时,;时,,
故为,共2个;
当时,时,;时,,时,
故为,共3个;
当时,时,;时,,
故为,共2个;
综上所述:共有个.
故答案为:.
【点睛】本题考查了整式方程的代入求值、整式方程的整数解,因式分解的应用,及分类讨论的思想方法.本题的关键及难点是运用分类讨论的思想方法解题.
19.,30
【分析】先利用提公因式法和平方差公式进行因式分解,再代入x的值即可.
【详解】解:,
当时,原式.
【点睛】本题考查因式分解,掌握提公因式法和公式法是解题的关键.
20.(1)6
(2)n
(3)见解析
【分析】(1)根据题目中的例子,可以直接得到结果;
(2)根据题目中给出的式子,可以直接得到答案;
(3)将(2)中等号左边用平方差公式计算即可.
【详解】(1)解:∵,,,,
∴,,
故答案为:6;
(2)由题意得:,
故答案为:n;
(3)
.
【点睛】此题考查了数字类的变化规律,有理数的混合运算,列代数式,平方差公式,正确理解题意,发现式子的变化特点是解题的关键.
21.(1)
(2)
(3)见解析
【分析】(1)根据题干的规律求解即可;
(2)根据题干的规律求解即可;
(3)将因式分解,展开化简求解即可.
【详解】(1);
(2);
(3)
.
【点睛】此题考查数字的变化规律,因式分解,整式乘法的混合运算,解题关键是通过观察,分析、归纳发现其中的变化规律.
22.(1)
(2),证明见解析
【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;
(2)观察相同位置的数变化规律可以得出第n个等式为,利用完全平方公式和平方差公式对等式左右两边变形即可证明.
【详解】(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:,
故答案为:;
(2)解:第n个等式为,
证明如下:
等式左边:,
等式右边:
,
故等式成立.
【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.
23.(1)不是“合和数”,是“合和数,理由见解析;(2)有,,,.
【分析】(1)首先根据题目内容,理解“合和数”的定义:如果一个自然数的个位数字不为,且能分解成,其中与都是两位数,与的十位数字相同,个位数字之和为,则称数为“合和数”,再判断,是否是“合和数”;
(2)首先根据题目内容,理解“合分解”的定义.引进未知数来表示个位及十位上的数,同时也可以用来表示.然后整理出:,根据能被4整除时,通过分类讨论,求出所有满足条件的.
【详解】解:(1)
不是“合和数”,是“合和数”.
,,
不是“合和数”,
,十位数字相同,且个位数字,
是“合和数”.
(2)设的十位数字为,个位数字为(,为自然数,且,),
则.
∴.
∴(是整数).
,
,
是整数,
或,
①当时,
或,
或.
②当时,
或,
或.
综上,满足条件的有,,,.
【点睛】本题考查了新定义问题,解题的关键是:首先要理解题中给出的新定义和会操作题目中所涉及的过程,结合所学知识去解决问题,充分考察同学们自主学习和运用新知识的能力.
24.(1);1;(2)t为39,28,17;的最大值;(3)
【分析】(1)6=1×6=2×3,由已知可求=;9=1×9=3×3,由已知可求=1;
(2)由题意可得:交换后的数减去交换前的数的差为:10b+a 10a b=9(b a)=54,得到b a=6,可求t的值,故可得到的最大值;
(3)根据的定义即可依次求解.
【详解】(1)6=1×6=2×3,
∵6 1>3 2,
∴=;
9=1×9=3×3,
∵9 1>3 3,
∴=1,
故答案为:;1;
(2)由题意可得:交换后的数减去交换前的数的差为:
10b+a 10a b=9(b a)=54,
∴b a=6,
∵1≤a≤b≤9,
∴b=9,a=3或b=8,a=2或b=7,a=1,
∴t为39,28,17;
∵39=1×39=3×13,
∴=;
28=1×28=2×14=4×7,
∴=;
17=1×17,
∴;
∴的最大值.
(3)①∵=20×21
∴;
②=28×30
∴;
③∵=40×42
∴;
④∵=56×60
∴,
故答案为:.
【点睛】本题考查因式分解的应用;理解题意,从题目中获取信息,列出正确的代数式,再由数的特点求解是解题的关键.
21世纪教育网(www.21cnjy.com)