本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
5.4 乘法公式(1) ( http: / / www.21cnjy.com / )同步练习
【知识盘点】
1.用字母表示平方差公式为:___________.
2.计算:
(1)(a+1)(a-1)=_________; (2)(-a+1)(-a-1)=________;
(3)(-a+1)(a+1)=________; (4)(a+1)(-a-1)=_______.
3.下列计算对不对?若不对,请在横线上写出正确结果.
(1)(x-3)(x+3)=x2-3( ),__________;
(2)(2x-3)(2x+3)=2x2-9( ),_________;
(3)(-x-3)(x-3)=x2-9( ),_________;
(4)(2xy-1)(2xy+1)=2xy2-1( ),________.
4.(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2;
(3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________.
5.计算:50×49=_________.
【基础过关】 ( http: / / www.21cnjy.com / )
6.下列各式中,能用平方差公式计算的是( )
(1)(a-2b)(-a+2b); (2)(a-2b)(-a-2b);
(3)(a-2b)(a+2b); (4)(a-2b)(2a+b).
A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)
7.计算(-4x-5y)(5y-4x)的结果是( )
A.16x2-25y2 B.25y2-16x2 C.-16x2-25y2 D.16x2+25y2
8.下列计算错误的是( )
A.(6a+1)(6a-1)=36a2-1 B.(-m-n)(m-n)=n2-m2
C.(a3-8)(-a3+8)=a9-64 D.(-a2+1)(-a2-1)=a4-1
9.下列计算正确的是( )
A.(a-b)2=a2-b2 B.(a-b)(b-a)=a2-b2
C.(a+b)(-a-b)=a2-b2 D.(-a-b)(-a+b)=a2-b2
10.下列算式能连续两次用平方差公式计算的是( )
A.(x-y)(x2+y2)(x-y) B.(x+1)(x2-1)(x+1)
C.(x+y)(x2-y2)(x-y) D.(x+y)(x2+y2)(x-y)
【应用拓展】 ( http: / / www.21cnjy.com / )
11.计算:
(1)(5ab-3x)(-3x-5ab) (2)(-y2+x)(x+y2)
(3)x(x+5)-(x-3)(x+3) (4)(-1+a)(-1-a)(1+b2)
12.利用平方差公式计算:
(1)200.2×199.8 (2)20052-2004×2006
13.解方程:(-3x-HYPERLINK "http://www.21cnjy.com/" EMBED Equation.DSMT4 )(-3x)=x(9x-HYPERLINK "http://www.21cnjy.com/" EMBED Equation.DSMT4 )
14.阅读题: ( http: / / www.21cnjy.com / )
我们在计算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)时,发现直接运算很麻烦,如果在算式前乘以(2-1),即1,原算式的值不变,而且还使整个算式能用乘法公式计算.解答过程如下:
原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(24-1)(24+1)(28+1)(216+1)(232+1)
=……=264-1
你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值吗?请试试看!
综合提高
15.仔细观察,探索规律:
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
(x-1)(x4+x3+x2+x+1)=x5-1
……
(1)试求25+24+23+22+2+1的值;
(2)写出22006+22005+22004+…+2+1的个位数.
答案:
1.(a+b)(a-b)=a2-b2 2.(1)a2-1 (2)a2-1 (3)1-a2 (4)-a2-2a-1
3.(1)×,x2-9 (2)×,4x2-9 (3)×,9-x2 (4)×,4x2y2-1
4.(1)3a+4b (2)4-2x (3)-7+x (4)9b2-a2
5.2499 6.B 7.A 8.C 9.D 10.D
11.(1)9x2-25a2b2 (2)x2-y4 (3)5x+9 (4)1-a2+b2-a2b2
12.(1)39999.96 (2)1
13.x=HYPERLINK "http://www.21cnjy.com/" EMBED Equation.DSMT4
14.(332-1)
15.(1)原式=26-1=63 ( http: / / www.21cnjy.com / )
(2)原式=22007-1,个位数为7
5.4 乘法公式(2)同步练习
【知识盘点】
1.用字母表示两数和的完全平方公式:_____________;
两数差的完全平方公式为:__________________.
2.(1)(a+3)2=___________________;(2)(a-3)2=__________________;
(3)(-a+3)2=_________________;(4)(-a-3)2=________________.
3.(1)x2+______+36=(x+6)2; (2)x2-_____+25=(x-5)2;
(3)9x2+6x+______=(3x+1)2; (4)4-12x+_______=(2-3x)2.
4.下列计算对不对?若不对,请在横线上写出正确结果.
(1)(2x-3y)2=4x2-9y2( ),_________;
(2)(-x-y)2=-x2-2xy-y2( ),________;
(3)(4a-b)2=16a2-2ab-b2( ),_______.
5.一个正方形的边长为acm,若边长增加2cm,则它的面积增大________.
6.(1)(a+b)2-(a-b)2=__________;
(2)若a+b=5,a-b=3,则ab的值为________.
【基础过关】 ( http: / / www.21cnjy.com / )
7.计算(-x+2y)2的结果是( )
A.-x2+4xy+y2 B.x2-4xy+4y2
C.-x2-4xy+y2 D.x2-2xy+2y2
8.(a+1)(-a-1)的结果是( )
A.-a2-2a-1 B.-a2-1 C.-a2+2a-1 D.a2-1
9.下列等式成立的是( )
A.(x-y)2=(-x-y)2 B.(x+y)2=(-x-y)2
C.(m+n)2=m2+n2 D.(-m-n)2=m2-2mn+n2
10.(x-3)2=x2+kx+9,则k的值为( )
A.3 B.-3 C.6 D.-6
11.下列各式中:(1)(-2x-1)2;(2)(-2x-1)(-2x+1);(3)(-2x+1)(2x+1);(4)(2x-1)2;(5)(2x+1)2;计算结果相同的是( )
A.(1)(4) B.(1)(5) C.(2)(3) D.(2)(4)
【应用拓展】 ( http: / / www.21cnjy.com / )
12.利用完全平方公式计算:
(1)1012 (2)992
13.计算:
(1)(2x+y)2 (2)(3x-y)(-y+3x)
(3)(2x+1)2-(2x-1)(2x+1) (4)(2x-y-3)(2x-y+3)
14.解方程:(1-3x)2+(2x-1)2=13(x-1)(x+1).
15.已知x+y=5,xy=2,求下列各式的值:(1)x2+y2 ;(2)(x-y)2
【综合提高】 ( http: / / www.21cnjy.com / )
16.观察下列各式,找规律:
①33-12=4×2; ②42-22=4×3; ③52-32=4×4; ④62-42=4×5;
(1)第5个等式是_______;
(2)第100个等式是_________;
(3)第n个等式是___________;
(4)说明第n个等式的正确性.
答案: ( http: / / www.21cnjy.com / )
1.(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2
2.(1)a2+6a+9 (2)a2-6a+9 (3)a2-6b+9 (4)a2+4a+9
3.(1)12x (2)10x (3)1 (4)9x2
4.(1)×,4x2-12xy+9y2 (2)×,x2+2xy+y2 (3)×,16a2-4ab+HYPERLINK "http://www.21cnjy.com/" EMBED Equation.DSMT4 b2
5.(4a+4)cm2 6.(1)4ab (2)4
7.B 8.A 9.B 10.D 11.B
12.(1)10201 (2)9801
13.(1)4x2+4xy+y2 (2)9x2-6xy+y2 ( http: / / www.21cnjy.com / )
(3)4x+2 (4)4x2-4xy+y2-9
14.x=1.5 15.(1)21 (2)17
16.(1)72-52=4×6
(2)1022-1002=4×101
(3)(n+2)2-n2=4(n+1).
左边=n2+4n+4-n2=4n+4 右边=4n+4
∵左边=右边
∴(n+2)2-n2=4(n+1)
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网