课件13张PPT。分解因式1.整式乘法有几种形式?
(1)单项式乘以单项式
(2)单项式乘以多项式: a(m+n)=am+an
(3)多项式乘以多项式: (a+b)(m+n)=am+an+bm+bn
2.乘法公式有哪些?
(1)平方差公式: (a+b)(a-b)=a2-b2
(2)完全平方公式: (a±b)2=a2±2ab+b2复习与回顾复习与回顾 3.试计算:
(1) 3a(a-2b+c)
(2) (a+3)(a-3)
(3) (a+2b)2
(4) (a-3b)2解: (1) 3a(a-2b+c)
=3a2-6ab+3ac
(2) (a+3)(a-3)=a2-9
(3) (a+2b)2=a2+4ab+4b2
(4) (a-3b)2= a2-6ab+9b2
做一做计算下列各式:
3x(x-1)= _____
m(a+b+c) = _____
(m+4)(m-4)= ____
(x-3)2= _______
a(a+1)(a-1)= ____根据左面的算式填空:
(1) 3x2-3x=_______
(2) ma+mb+mc=______
(3) m2-16=_________
(4) x2-6x+9=________
(5) a3-a=______
议一议 由a(a+1)(a-1)得到a3-a的变形是什么运算?
由a3-a得到a(a+1)(a-1)的变形与它有什么不同?答:由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a-1)的变形与上面的变形互为逆过程.993-99能被100整除吗?你是怎样想的?与同伴交流.小明是这样想的:
993-99=99×992-99 ×1
=99 ×(992-1)
=99 (99+1)(99-1)
= 99×100×98
所以, 993-99能被100整除.
你知道每一步的根据吗?
想一想: 993-99还能被哪些整数整除?因式分解定义把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式. ● 想一想: 分解因式与整式乘法有何关系?分解因式与整式乘法是互逆过程练习一 理解概念判断下列各式哪些是整式乘法?哪些是因式分解?
(1).x2-4y2=(x+2y)(x-2y)
(2).2x(x-3y)=2x2-6xy
(3).(5a-1)2=25a2-10a+1
(4).x2+4x+4=(x+2)2
(5).(a-3)(a+3)=a2-9
(6).m2-4=(m+4)(m-4)
(7).2 πR+ 2 πr= 2 π(R+r)因式分解整式乘法整式乘法因式分解整式乘法因式分解因式分解练习二 试一试把下列个式写成乘积的形式:
(1). 1-x2
(2). 4a2+4a+1
(3). 4x2-8x
(4). 2x2y-6xy2
(5). 1-4x2
(6). x2-14x+49=(1+x)(1-x)=(2a+1)2=4x(x-2)=2xy(x-3y)=(1-2x)(1+2x)=(x-7)2练习三 拓展应用 1. 计算: 7652×17-2352 ×17
解: 7652×17-2352 ×17
=17(7652 -2352)=17(765+235)(765 -235)
=17 ×1000 ×530=9010000 2. 20042+2004能被2005整除吗?
解: ∵20042+2004=2004(2004+1)
=2004 ×2005
∴ 20042+2004能被2005整除.规律总结分解因式与整式乘法是互逆过程.
分解因式要注意以下几点:
1.分解的对象必须是多项式.
2.分接的结果一定是几个整式的乘积的形式.
3.要分解到不能分解为止.课后练习若a=101,b=99,求a2-b2的值.
若x=-3,求20x2-60x的值.
1993-199能被200整除吗?还能被哪些整数整除?课后练习4. 若n是整数,证明(2n+1)2-(2n-1)2是8的倍数.
5. 某工厂需加工一批零件,由甲、乙、丙三位工人共同完成,已知甲工人每天加工23个零件,乙工人每天加工19个零件,丙工人每天加工18个零件,三人需共同做12天才能做完,要加工的零件共有多少?