中小学教育资源及组卷应用平台
4.1因式分解的意义
一、填空题
1.甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则a+b=
2.如果二次三项式可以分解为(x﹣b)(x﹣2),则= .
3.下列变形:①(x+1)(x﹣1)=x2﹣1;②9a2﹣12a+4=(3a﹣2)2;③3abc3=3c abc2;④3a2﹣6a=3a(a﹣2)中,是因式分解的有 (填序号)
4.(1)若时,,则 ;
(2)多项式分解因式后有因式,则 .
5.多项式可以因式分解为,则系数 .
6.把分解因式得,则的值为 .
二、单选题
7.下列各式从左到右的变形中,是因式分解的是( )
A. B.
C. D.
8.下列从左到右的变形,其中是因式分解的是( )
A. B.
C. D.
9.下列从左到右的变形中,因式分解正确的是( )
A. B.
C. D.
10.下列式子从左到右的变形是因式分解的是( )
A. B.
C. D.
11.下列各式从左到右的变形是因式分解的是( )
A. B.
C. D.
三、解答题
12.仔细阅读下面例题:
已知二次三项式有一个因式是,求另一个因式以及m的值.
解:设另一个因式为,得,则,解得:,.∴另一个因式为,.
类比上面方法解答:
(1)若二次三项式可分解为,则______.
(2)若二次三项式有一个因式是,求另一个因式以及b的值.
四、计算题
13.检验下列因式分解是否正确.
(1) .
(2) .
(3) .
(4) .
答案解析部分
1.【答案】15
【知识点】因式分解的概念
2.【答案】4
【知识点】多项式乘多项式;因式分解的概念
3.【答案】②④
【知识点】因式分解的概念
4.【答案】5;
【知识点】因式分解的概念;估计方程的解
5.【答案】
【知识点】多项式乘多项式;因式分解的概念
6.【答案】
【知识点】多项式乘多项式;因式分解的概念
7.【答案】D
【知识点】因式分解的概念
8.【答案】B
【知识点】因式分解的概念
9.【答案】A
【知识点】因式分解的概念
10.【答案】A
【知识点】因式分解的概念
11.【答案】D
【知识点】因式分解的概念
12.【答案】(1)4
(2)另一个因式为,b值为1
【知识点】因式分解的概念
13.【答案】(1)解:,
因式分解 不正确.
(2)解:,
因式分解 正确.
(3)解:,
因式分解 不正确.
(4)解: ,
因式分解 不正确.
【知识点】因式分解的正确性判断
21世纪教育网(www.21cnjy.com)
1 / 4