1.5.1平行线的性质 教案

文档属性

名称 1.5.1平行线的性质 教案
格式 docx
文件大小 790.9KB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2025-02-04 06:19:29

图片预览

文档简介

中小学教育资源及组卷应用平台
分课时教学设计
第7课时《1.5.1平行线的性质 》教学设计
课型 新授课√ 复习课口 试卷讲评课口 其他课口
教学内容分析 经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。经历探索平行线性质的过程,掌握平行线的性质,并能解决一些问题.
学习者分析 掌握由“线”定“角”:由“线”的位置关系(平行),定“角”的数量关系(相等),运用推理的方法进行简单的推理与计算.
教学目标 理解并掌握平行线的性质,并能进行简单的推理.
教学重点 平行线的性质(1).
教学难点 综合运用平行线的判定和性质进行有条理的分析和表达.
学习活动设计
教师活动学生活动环节一:引入新课问题1:如何判断两直线平行? 1、平行线的定义:在同一平面内,不相交的两条直 线叫做平行线. 2、基本事实法:同位角相等 两直线平行 3、特例法:在同一平面内,垂直于同一条直线的 两直线平行 4、定理1:内错角相等 两直线平行 5、定理2:同旁内角互补 两直线平行 6、传递法:平行于同一条直线的两条直线互相平行 问题2:根据同位角相等可以判定两直线平行,反过来如果两直线平行同位角之间有什么关系呢? 实验:(让学生先寻找教室里具有平行的实物,然后教师以窗户的横格为例)请看老师用三角尺去检验一对同位角,看看有何结果?(教师用三角尺在窗户上演示,学生观察并思考) 学生活动1: 学生在教师的引导下,能很快回忆相关问题. ? 带着问题参与新课. 活动意图说明:激发学生兴趣,引入新课主题,激发学生的兴趣,理解学生思考,进行探索.通过由直线平行,得出同位角的关系,平行转化为角度相等或互补. 环节二:新知探究 (1)已知a//b,任意画一条直线c与平行线a、b相交。 (2)任选一对同位角,用适当的 方法实验,看看这一对同位角有什么关系 方法一:度量法 方法二:裁剪拼接法(要求学生多画几条截线试试,鼓励学生用多种方法进行探索) 图中 同位角 大小有什么关系?(用多种方法尝试解答) a∥b得出:∠1=∠5,∠2=∠6,∠3=∠7,∠4=∠8 由此得到 平行线的性质(一)如果两条平行直线被第三条直线所截,同位角相等 简记为:两直线平行,同位角相等 探究的反思:如果直线a与b不平行,你的猜想还成立吗? 结论:如果直线a与b不平行,同位角则不相等. 指出:1)同位角相等是平行线特有的性质(以消除”凡是同位角都相等”;”两直线被第三条直线所截,同位角相等”的错误判断) 2)它与前面学过的“同位角相等,两直线平行”之间的区别(通过形象板书示范予以直观说明). 性质和判定的比较 两条平行直线被第三条直线直线所截, 思考:1、判定与性质的条件与结论有什么关系? 2、使用判定时是已知__________________,说明__________________; 答案:角的相等 两直线平行 使用性质时是已知__________________,说明__________________。 答案:两直线平行 角的相等 性质1:如果两条平行直线被第三条直线所截,同位角相等.简记为:两直线平行,同位角相等. 数学语言表示: ∵ a//b (已知) ∴ ∠1=∠2 (两直线平行,同位角相等) 学生活动2: 学生自学、互动。在具体计算时,可以通过小组合作交流,放手让学生去思考、讨论,猜想、发现结论. 学生自主解答,教师适时的进行提示 学生思考 活动意图说明:从旧知识出发,呼应引课问题,学生通过自己解决问题,让学生在小组内共同合作.理解并掌握平行线的性质,并能进行简单的推理. 环节三:典例精析 例1:如图, 梯子的各条横档互相平行, ∠1=100°,求∠2的度数. 解析思路:1)由题意知要求角的度数,思考去找两平行线被第三直线所截而构成的同位角) 2)注意观察到∠2并非∠1的同位角,于是寻找中间量∠3(邻补角) (师生共同完成解题过程,并强调书写格式和依据) 解:已知AB//CD,根据“两直线平行,同位角相等”,得∠3=∠1=100° 由平角的意义,得∠2+∠3=180°. ∴ ∠2=180°-∠3=180°-100°=80°. 例2: 如图:已知∠1=∠2.若直线b⊥m,则直线a⊥m,请说明理由. 解:如图,已知∠1=∠2, 根据“同位角相等,两直线平行”,得a//b, 由a//b,再根据“两直线平行,同位角相等”, 得∠3=∠4,又已知b⊥m , 根据垂直的意义,得∠4=90° ∴ ∠3=90° ∴ a⊥m(垂直的意义) 解析:1)这是综合应用性质和判定题,是本节的难点 2)分析已知条件的个数及所能得到的结论,然后联系所求与已知的关系 3)引导学生看图,并做好适当设问(分析法) 4)板书解题步骤(综合法) 归纳: 性 质: 由“线”定“角”:由“线”的位置关系(平行),定“角”的数量关系(相等) 判 定: 由“角”定“线”:由“角”的数量关系(相等),定“线”的位置关系(平行) 学生活动3: 参与教师分析和讲例题. 活动意图说明:熟练掌握.巩固学的知识,学生通过自己解决问题,充分发挥学习的主动性,综合运用平行线的判定和性质进行有条理的分析和表达.
板书设计
课堂练习 【知识技能类作业】 必做题: 1.如图所示,直线a,b被直线c所截,且a∥b,∠1=40°,则∠2的度数为 (   ) A.40° B.50° C.140° D.160° 选做题: 2. 如图,D是AB上一点,E是AC上一点,∠ADE=60°,∠B=60°,∠AED=40°. (1)DE和BC平行吗?为什么? (2)∠C是多少度?为什么? 【综合拓展类作业】 3.如图,EF∥AD,∠1=∠2,∠BAC=70°.求∠CGD的度数.
课堂总结 1.平行线的性质(一) 定理:两条平行线被第三条直线所截,____________.简单地说:两直线平行,同位角相等. (同位角相等) 2.性 质: 由“线”定“角”:由“线”的位置关系(平行),定“角”的数量关系(相等) 3.判 定: 由“角”定“线”:由“角”的数量关系(相等),定“线”的位置关系(平行)
作业设计 【知识技能类作业】 必做题: 1.如图,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是 (   ) A.80° B.100° C.120° D.150° 选做题: 2.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线. (1)∠1与∠2有什么关系,为什么? (2)BE与DF有什么关系?请说明理由. 【综合拓展类作业】 3.潜望镜中的两个镜子MN、EF是平行放置的,光线经过镜子反射时,∠1=∠2,∠3=∠4,请说明为什么进入潜望镜的光线AB和离开潜望镜的光线CD是平行的
教学反思
21世纪教育网(www.21cnjy.com)