中小学教育资源及组卷应用平台
学习任务单
课程基本信息
学科 数学 年级 七年级 学期 秋季
课题 3.3.1 多项式的乘法
教科书 书 名:义务教育教科书数学七年级下册 出版社:浙江教育出版社
学生信息
姓名 学校 班级 学号
学习目标
1、经历探索多项式乘法法则的过程,理解多项式乘法法则。 2、学会用多项式乘法法则进行计算。 3、培养用几何图形理解代数知识的能力和复杂问题转化为简单问题的转化思想。
课前学习任务
复习引入 【思考】 我们有哪几种方法来表示此厨房的总面积
课上学习任务
【学习任务一】
思考: 1、观察方法一式子中含有什么运算? 2、观察方法一与方法二、三、四中各项有何关系? 3、多项式与多项式相乘能否直接转化为单项式与单项式相乘? 【学习任务二】 用乘法分配律 完成(m+b)(n+a)的计算 把 m(n+a) 与 b(n+a) 看成两个单项式与多项式相乘的运算,应用单项式乘多项式的法则。 请写出过程: 提炼概念 多项式的乘法法则: 【学习任务三】 例1:计算 2 先化简,再求值: 其中a= 【习任务四】课堂练习 必做题: 1.下列多项式相乘的结果为a2-3a-18的是 ( ) A.(a-2)(a+9) B.(a+2)(a-9) C.(a-3)(a+6) D.(a+3)(a-6) 选做题: 2.计算:(1)(3x+1)(x-2);(2)(x-8y)(x-y) 【综合拓展类作业】 3.先化简,再求值:4x(y-x)+(2x+y)·(2x-y), 其中x=,y=-2 【知识技能类作业】 必做题: 1. 选做题: 2.若a-b=1,ab=-2,则(a+1)(b-1)=_______。 【综合拓展类作业】 3.计算: (1) (x+2)(x+3)=__________; (2) (x-4)(x+1)=_________; (3) (y+4)(y-2)=__________; (4) (y-5)(y-3)=__________. 由上面计算的结果找规律,观察填空: (x+p)(x+q)=___2+______x+_______.
21世纪教育网(www.21cnjy.com)(共20张PPT)
第一章 直角三角形
3.3.1 多项式的乘法
01
教学目标
02
新知导入
03
新知讲解
04
课堂练习
05
课堂小结
06
作业布置
01
教学目标
01
02
1. 经历探索多项式乘法法则的过程,理解多项式乘法法则。
2、学会用多项式乘法法则进行计算。
02
新知导入
小明家买了新房子,要装修厨房,打算在厨房沿墙做一排矮柜,使厨房的空间得到充分的利用,而且便于清理。
梦幻厨房欣赏
03
新知探究
b+m
a+n
m
b
窗口矮柜
右侧矮柜
a
n
图5-5
(a+n)(b+m)
合作学习:
我们有哪几种方法来表示此厨房的总面积
方法一
03
新知探究
a
n
a(b+m)
n(b+m)
a(b+m)
+n(b+m)
m
b
a
n
am
mn
ab
nb
ab
+am
+nb
a+n
b(a+n)
+m(a+n)
m(a+n)
b(a+n)
m
b
方法二
方法三
方法四
+nm
03
新知讲解
思考:
1、观察方法一式子中含有什么运算?
2、观察方法一与方法二、三、四中各项有何关系?
3、多项式与多项式相乘能否直接转化为单项式与单项式相乘?
由此,我们可以得到什么结论呢
03
新知讲解
用乘法分配律 完成(m+b)(n+a)的计算
把 m(n+a) 与 b(n+a) 看成两个单项式与多项式相乘的运算,应用单项式乘多项式的法则。
(m+b)(n+a)=m(n+a) + b(n+a)
=
mn+ma
+
+
bn+ba
=mn
mn
+ ma
+ ma
+ bn
+ bn
+ ba
规律
(m+b)(n+a)=m(n+a) + b (n+a)
03
新知讲解
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即(a+n)(b+m)=ab+am+nb+nm。
多项式的乘法法则
=
ab
1
2
3
4
+am
+nb
1
2
3
4
(a+n)(b+m)
+mn
提炼概念
新课探究
例
E
例1:计算
解:(1)原式=ax+ay+2bx+2by
(2)原式=3x2-x+9x-3
注意:1、两项相乘时,先定符号。所得积的符号由这两项的符号来确定:同号得正异号得负。
2、最后的结果要合并同类项。
03
新知讲解
例2 先化简,再求值:
其中
解:原式=6a2-9a+2a-3-6a2+24a
=17a-3
当a= 时
原式=17× -3=-1
04
课堂练习
【知识技能类作业】必做题:
1.下列多项式相乘的结果为a2-3a-18的是 ( )
A.(a-2)(a+9) B.(a+2)(a-9)
C.(a-3)(a+6) D.(a+3)(a-6)
【解析】 A.(a-2)(a+9)=a2+7a-18
B.(a+2)(a-9)=a2-7a-18
C.(a-3)(a+6)=a2+3a-18
D.(a+3)(a-6)=a2-3a-18
故选择D
04
课堂练习
【知识技能类作业】选做题:
2.计算:(1)(3x+1)(x-2);(2)(x-8y)(x-y).
解:(1)(3x+1)(x-2)
=(3x)·x+(3x)(-2)+1·x+1×(-2)
=3x2-6x+x-2
=3x2-5x-2
(2)(x-8y)(x-y)
=x2-xy-8xy+8y2
=x2-9xy+8y2
04
课堂练习
【综合拓展类作业】
3.先化简,再求值:4x(y-x)+(2x+y)·(2x-y),
其中x= ,y=-2
解:原式=4xy-4x2+4x2-2xy+2xy-y2=4xy-y2
当x= ,y=-2时
原式=4× ×(-2)-(-2)2=-4-4=-8
05
课堂小结
分配律
分配律
多项式
×
多项式
单项式
×
多项式
单项式
×
单项式
1.多项式乘以多项式的 依据是什么?
2.如何进行多项式与多项式乘法运算?
3.运用多项式乘法法则,要有序地逐项相乘,不要漏乘,并注意项的符号。
06
作业布置
【知识技能类作业】必做题:
1.
06
作业布置
【知识技能类作业】选做题:
2.若a-b=1,ab=-2,则(a+1)(b-1)=_______.
解 原式=ab-a+b-1=ab-(a-b)-1
当a-b=1,ab=-2时,
原式=-2-1-1=-4
06
作业布置
【综合拓展类作业】
3.计算:
(1) (x+2)(x+3)=__________;
(2) (x-4)(x+1)=_________;
(3) (y+4)(y-2)=__________;
(4) (y-5)(y-3)=__________.
x2+5x+6
x2-3x-4
y2+2y-8
y2-8y+15
由上面计算的结果找规律,观察填空:
(x+p)(x+q)=___2+______x+_______.
x
(p+q)
pq
Thanks!
https://www.21cnjy.com/recruitment/home/fine中小学教育资源及组卷应用平台
学 科 数学 年 级 七下 设计者
教材版本 浙教版 册、章 下册第三章
课标要求 使学生理解并掌握整式的乘法(包括单项式乘单项式、单项式乘多项式、多项式乘多项式)和除法(多项式除以单项式)的基本法则,能够准确进行整式的乘除运算.
内容分析 整式的乘除是初中数学中的重要内容,它不仅为学生后续学习代数式、方程与不等式、函数等知识打下坚实的基础,而且培养了学生的逻辑思维能力和运算能力。浙教版数学七年级下册中的整式乘除单元,旨在通过一系列由浅入深的例题和练习,帮助学生掌握整式乘除的基本法则和技巧.
学情分析 七年级学生已经具备了一定的数学基础,如有理数的运算、代数式的表示与简化等。然而,整式的乘除运算相对于之前的数学内容来说,更加抽象和复杂,需要学生具备较强的逻辑思维能力和代数运算能力。因此,在教学过程中,教师应注重培养学生的抽象思维,通过多样化的教学活动激发学生的学习兴趣,提高他们的学习效率.
单元目标 教学目标1.理解并掌握整式的乘法法则,包括单项式乘单项式、单项式乘多项式、多项式乘多项式。2.理解并掌握整式的除法运算,包括单项式除以单项式、多项式除以单项式。3.能够熟练地进行整式的乘除运算,并能解决相关的实际问题。4.培养学生的逻辑思维能力和代数运算能力,提高他们的数学素养。(二)教学重点、难点教学重点:整式乘法的基本法则,特别是多项式乘多项式的运算步骤.多项式除以单项式的运算技巧,以及整式乘除在实际问题中的应用.教学难点:多项式除以单项式的运算技巧,以及整式乘除在实际问题中的应用.
单元知识结构框架及课时安排 单元知识结构框架 教材特点:1. **循序渐进**: - 从单项式乘除到多项式乘除,从简单到复杂,符合学生的认知规律。2. **注重探究**: - 通过问题引导、探究活动,帮助学生理解运算法则和公式的推导过程。3. **联系实际**: - 结合生活中的实际问题(如面积计算、分配问题),体现数学的应用价值。4. **强调基础**: - 通过大量练习,帮助学生巩固基础运算能力.(三)教学设计思路建议:1.注重基础知识的巩固在教学整式的乘除之前,教师应先复习有理数的运算和代数式的基础知识,确保学生能够熟练地运用这些知识。同时,可以通过一些简单的例题,帮助学生巩固基础知识,为后续的学习打下坚实的基础。2.采用多样化的教学方法整式的乘除运算相对抽象,为了激发学生的学习兴趣,教师应采用多样化的教学方法。例如,可以利用多媒体手段展示整式的乘除过程,通过动画、图片等形式使学生更加直观地理解运算法则。此外,还可以采用小组合作、竞赛等方式,让学生在轻松愉快的氛围中学习。3.注重运算技巧的训练整式的乘除运算需要掌握一定的技巧,如乘法分配律、乘法公式等。在教学过程中,教师应注重这些技巧的训练,通过大量的练习题,帮助学生掌握这些技巧,提高他们的运算速度和准确性。4.结合实际问题进行教学为了使学生更好地理解整式的乘除运算,教师可以结合一些实际问题进行教学。例如,可以利用整式的乘除运算解决面积、体积等问题,让学生在实际问题中感受数学的应用价值,提高他们的学习兴趣和动力。5.及时反馈与调整教学策略在教学过程中,教师应及时关注学生的学习情况,通过课堂练习、课后作业等方式了解学生的学习效果。对于学习中出现的问题,教师应及时给予反馈和指导,帮助学生解决困难。同时,根据学生的学习情况,教师应灵活调整教学策略,确保每个学生都能跟上教学进度。
(二)课时安排课时编号单元主要内容课时数3.1.1 同底数幂的乘法(1)13.1.2 同底数幂的乘法13.1.23 同底数幂的乘法(3)13.2 单项式的乘法13.3.1多项式的乘法(1)13.3.2 多项式的乘法(2)13.4.1 乘法公式(1)13.4.2乘法公式(2)13.5整式的化简13.6.1同底数幂的除法(1)13.6.2同底数幂的除法(2)13.7整式的除法
达成评价 课题课时目标达成评价评价任务3.1 同底数幂的乘法(1)1、理解同底数幂的乘法法则的由来,掌握同底数幂相乘的乘法法则;2、学会并熟练地运用同底数幂的乘法法则进行计算;3、在探究“性质”的过程中,培养学习观察,概括与抽象的能力。1.重点是同底数幂的乘法法则及其灵活应用. 2.理解同底数幂的乘法法则是由乘法的概念加以具体到抽象的概括抽象过程.任务一:通过创设情景引出问题,有利于学生思考学习的问题情景,激发学生思考、类比、联想,引导学生理解同底数幂的乘法法则的由来,掌握同底数幂相乘的乘法法则.任务二:例题精讲,掌握同底数幂的乘法法则进行计算及其应用.3.1(2) 同底数幂的乘法1、经历探索幂的乘方的法则,进一步体会幂的意义,发展推理能力和有条理的表达能力,培养从特殊到一般,从具体到抽象的逐步概括抽象的认识能力。2、了解幂的乘方的运算法则,并能利用法则进行计算和解决一些实际问题.1.重点是法则的探索过程和法则的灵活应用.2.幂的乘方与同底数幂相乘的混合运算.任务一: 出示目标,让学生明确学习目标,了解学习内容.任务二:通过对特例的考察,归纳幂的乘方的运算性质,并运用幂的意义加以说明.任务3:例题精讲,增强学生自己解决问题的能力.3.1 同底数幂的乘法(3)1. 理解并掌握积的乘方法则及计算;2.会进行简单的幂的混合运算;3.注意积的乘方、幂的乘方与同底数幂的运算的指数变化.1.重点是理解法则的探索过程和掌握并正确运用积的乘方法则.2.运算中有积的乘方,幂的乘方,同底数幂相乘等多种法则,能准确运算.任务1:让学生动手实践,充分交流,通过探究、讨论、交流理解并掌握积的乘方法则及计算.任务2:让学生自己动手解答问题,检验知识的掌握情况.3.2 单项式的乘法1.运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法.2.理解平行四边形的另一种判定方法,并学会简单运用.?1.平行四边形判定方法的探究、运用.2.对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用.任务1:复习平行四边形的判定方法,并采用“抛锚式”的教学策略,设计生活情境问题,激发学生的探究欲望,引入新知教学.任务2:例题精讲,训练学生能够清晰有条理的表达自己的思考过程,做到言之有理、落笔有据的意识.3.3 多项式的乘法(1)1.经历探索多项式乘法法则的过程,理解多项式乘法法则。2、学会用多项式乘法法则进行计算。3、培养用几何图形理解代数知识的能力和复杂问题转化为简单问题的转化思想.1.掌握多项式的乘法法则并加以运用.2.理解多项式乘法法则的推导过程和运用法则进行计算.任务1:理解并掌握多项式乘法法则.任务2:巩固例题,运用问题探究的方法尝试解决问题,从而巩固新知培养学生知识的迁移运用能力.3.3 多项式的乘法(2)1.会进行多项式与多项式相乘的计算;2.能综合运用多项式乘法进行化简与计算.1.掌握多项式与多项式相乘的法则.2.综合运用多项式乘法进行化简与计算.任务1:导入新课、掌握多项式与多项式相乘的法则.任务2:巩固例题,进一步理解和掌握在化简求值、解方程时,注意运用多项式乘法运算.3.4 乘法公式(1)1.掌握平方差公式,会利用平方差公式计算;2.能运用平方差公式进行简便计算.1.掌握平方差公式,会利用平方差公式计算。2.体会公式中的a,b可以表示数,也可以表示单项式、多项式等.任务1:通过面积拼图,理解平方差公式.任务2:巩固例题,进一步理解和掌握体会公式中的a,b可以表示数,也可以表示单项式、多项式等.3.4 乘法公式(2)1. 掌握完全平方公式,能运用完全平方公式进行计算;2.能运用完全平方公式解决有关问题.1.掌握完全平方公式,能运用完全平方公式进行计算.2.理解完全平方公式的结构特征是难点.任务1:通过面积拼图,理解完全平方公式.任务2:巩固例题, 掌握完全平方公式,能运用完全平方公式进行计算.3.5整式的化简1.能利用加、减、乘、乘方将整式化简;2.能利用整式运算解决简单的实际问题.1.能利用加、减、乘、乘方将整式化简.2.能利用整式运算解决简单的实际问题.任务1:实际问题中利用整式运算关键要能求出代数式的值.任务2:巩固例题,掌握整式运算解决简单的实际问题.3.6同底数幂的除法(1)1.掌握同底数幂相除的法则及运算;2.能逆用同底数幂相除的法则.1.掌握同底数幂相除的法则及运算.2.能逆用同底数幂相除的法则.任务1:让学生动手动脑,能逆用同底数幂相除的法则.任务2:巩固例题,通过掌握同底数幂相除的法则及运算.3.6同底数幂的除法(2)1.理解并掌握零指数幂与负整数指数幂;2.会用科学记数法表示绝对值较小的数.1.理解并掌握零指数幂与负整数指数幂.2.会用科学记数法表示绝对值较小的数.任务1:经历探索负整数指数幂和零指数幂的运算性质的过程,进一步体会幂的意义.任务2:巩固例题,理解并掌握零指数幂与负整数指数幂.3.7整式的除法1.理解并掌握单项式除以单项式法则并能运用;2.理解并掌握多项式除以单项式法则并能运用;3.会进行简单的乘除混合运算.1.理解并掌握单项式除以单项式的法则及多项式除以单项式法则并能运用.2.会进行简单的乘除混合运算.任务1:理解并掌握单项式除以单项式法则并能运用.任务2:巩固例题,理解并掌握单项式除以单项式的法则及多项式除以单项式法则并能运用.
第3章《整式的乘除》单元教学设计
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
分课时教学设计
第5课时《 3.3.1 多项式的乘法》教学设计
课型 新授课√ 复习课口 试卷讲评课口 其他课口
教学内容分析 经历探索多项式乘法法则的过程,理解多项式乘法法则.
学习者分析 理解并掌握多项式乘法法则.通过分配律的应用加以解释,体会了数形结合和转化的思想.
教学目标 1、经历探索多项式乘法法则的过程,理解多项式乘法法则. 2、学会用多项式乘法法则进行计算. 3、培养用几何图形理解代数知识的能力和复杂问题转化为简单问题的转化思想.
教学重点 掌握多项式的乘法法则并加以运用.
教学难点 理解多项式乘法法则的推导过程和运用法则进行计算.
学习活动设计
教师活动学生活动环节一:引入新课梦幻厨房欣赏 小明家买了新房子,要装修厨房,打算在厨房沿墙做一排矮柜,使厨房的空间得到充分的利用,而且便于清理。 学生活动1: 学生在教师的引导下,能很快回忆相关问题. ? 带着问题参与新课. 活动意图说明:激发学生兴趣,引入新课主题,激发学生的兴趣,理解学生思考,进行探索.经历探索多项式乘法法则的过程. 环节二:新知探究验证公式: 我们有哪几种方法来表示此厨房的总面积 思考: 1、观察方法一式子中含有什么运算? 2、观察方法一与方法二、三、四中各项有何关系? 3、多项式与多项式相乘能否直接转化为单项式与单项式相乘? 由此,我们可以得到什么结论呢 用乘法分配律 完成(m+b)(n+a)的计算 把 m(n+a) 与 b(n+a) 看成两个单项式与多项式相乘的运算,应用单项式乘多项式的法则。 提炼概念 多项式的乘法法则 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即(a+n)(b+m)=ab+am+nb+nm。 学生活动2: 学生自学、互动。在具体计算时,可以通过小组合作交流,放手让学生去思考、讨论,猜想、发现结论. 学生自主解答,教师适时的进行提示 学生思考 活动意图说明:从旧知识出发,呼应引课问题,学生通过自己解决问题,让学生在小组内共同合作.理解并掌握多项式乘法法则. 环节三:典例精析 例1:计算 解:(1)原式=ax+ay+2bx+2by (2)原式=3x2-x+9x-3 注意:1、两项相乘时,先定符号。所得积的符号由这两项的符号来确定:同号得正异号得负。 2、最后的结果要合并同类项。 例2 先化简,再求值: 其中a= 解:原式=6a2-9a+2a-3-6a2+24a =17a-3 当a= 时 原式=17× -3=-1 学生活动3: 参与教师分析和讲例题. 活动意图说明:熟练掌握.巩固学的知识,学生通过自己解决问题,充分发挥学习的主动性,掌握多项式的乘法法则并加以运用.
板书设计
课堂练习 【知识技能类作业】 必做题: 1.下列多项式相乘的结果为a2-3a-18的是 ( ) A.(a-2)(a+9) B.(a+2)(a-9) C.(a-3)(a+6) D.(a+3)(a-6) 选做题: 2.计算:(1)(3x+1)(x-2);(2)(x-8y)(x-y) 【综合拓展类作业】 3.先化简,再求值:4x(y-x)+(2x+y)·(2x-y), 其中x=,y=-2
课堂总结
作业设计 【知识技能类作业】 必做题 1. 选做题: 2.若a-b=1,ab=-2,则(a+1)(b-1)=_______。 【综合拓展类作业】 3.计算: (1) (x+2)(x+3)=__________; (2) (x-4)(x+1)=_________; (3) (y+4)(y-2)=__________; (4) (y-5)(y-3)=__________. 由上面计算的结果找规律,观察填空: (x+p)(x+q)=___2+______x+_______.
教学反思
21世纪教育网(www.21cnjy.com)