中小学教育资源及组卷应用平台
2.4二元一次方程组的应用培优练习浙教版2024—2025学年七年级下册
一.选择题
1.用一根绳子环绕一棵大树,若环绕大树3周,则绳子还多4尺;若环绕大树4周,则绳子又少了3尺.这根绳子有多长?环绕大树一周需要多少尺?设这根绳子有x尺,环绕大树一周需要y尺,根据题意列方程组为( )
A. B.
C. D.
2.某车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使产品配套?设安排x名工人生产镜片,y名工人生产镜架,则可列方程组( )
A. B.
C. D.
3.一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某学生做了全部试题共得70分,他做对了( )道题.
A.17 B.18 C.19 D.20
4.“九宫图”传说是远古时代洛河中的一个神龟背上的图案,故又称“龟背图”,中国古代数学史上经常研究这一神话.数学上的“九宫图”所体现的是一个3×3表格,其每行、每列、每条对角线上三个数字之和都相等,也称为三阶幻方,如图是一个三阶幻方,则2x+y的值为( )
A.﹣5 B.﹣4 C.4 D.5
5.如图,七个相同的小长方形组成一个大长方形ABCD,若CD=21,则长方形ABCD的面积为( )
A.560 B.490
C.630 D.700
二.填空题
6.如图,用12块形状和大小均相同的小长方形纸片拼成一个宽是40厘米的大长方形,则每个小长方形的周长是 厘米.
7.一生态牧场上的草每天均匀生长.这片草可供16头牛吃60天,或者供18头牛吃50天.如果将这片草全部割下制成干草以备冬天的草料,但制成干草后使用要比直接使用青草损失的营养.那么,由这些割下来的草所制成的干草可供30头牛吃 天.
8.一工坊用铁皮制作糖果盒,每张铁皮可制作盒身20个,或制作盒底30个,一个盒身与两个盒底配成一套糖果盒.现有35张铁皮,则用 张铁皮做盒身, 张铁皮做盒底,恰巧配套.
9.已知x1,x2,x3…x520中每个数只能取﹣1,0,2中的一个,且满足,则 .
10.小明在某商店购买商品A,B共三次,只有一次购买时,商品A,B同时打折,其余两次均按商品的原价购买,三次购买商品A,B的数量及费用如表:
商品A的数量/个 商品B的数量/个 总费用/元
第一次 6 5 1140
第二次 3 7 1110
第三次 9 8 1062
若商品A,B的折扣相同,则折扣是 折.
三.解答题
11.列方程(组)解应用题:
某超市用9600元购进甲、乙两种商品共200件,这两种商品的进价,标价如下表:
价格 类型 甲种 乙种
进价(元/件) 30 60
标价(元/件) 50 90
(1)求甲、乙两种商品各购进多少件?
(2)若甲种商品按标价下降a元出售,乙种商品按标价八折出售,那么这批商品全部售出后,超市共获利2640元,求a的值.
12.某中学组织七年级师生共390人开展研学活动,学校向租车公司租赁A、B两种车型接送师生往返,若租用A型车2辆,B型车5辆,则刚好坐满;若租用A型车5辆,B型车3辆,则空余15个座位.
(1)求A、B两种车型各有多少个座位?
(2)若租用同一种车,且A型车租金为1600元/辆,B型车租金为1850元/辆,要使每位师生都有座位,怎样租车更合算?
13.“国美”、“苏宁”两家电器商场出售同样的空气净化器和过滤网,空气净化器和过滤网在两家商场的售价一样.已知买1个空气净化器和2个过滤网要花费2440元,买2个空气净化器和3个过滤网要花费4760元.
(1)求1个空气净化器与1个过滤网的销售价格分别是多少元?
(2)为了迎接新年,两家商场都在搞促销活动,“国美”规定:这两种商品都打九五折;“苏宁”规定:买1个空气净化器赠送2个过滤网.若某单位想要买10个空气净化器和30个过滤网,如果只能在一家商场购买,请问选择哪家商场购买更合算,请说明理由.
14.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市“一户一表”生活用水阶梯式计费价格表的部分信息:
自来水销售价格 污水处理价格
每户每月用水量 单价:元/吨 单价:元/吨
17吨及以下 a 0.90
超过17吨但不超过30吨的部分 b 0.90
超过30吨的部分 6.00 0.90
(说明:①每户生产的污水量等于该户自来水用量;②水费=自来水费用+污水处理费)
已知小王家2024年7月用水15吨,交水费40.5元.8月份用水26吨,交水费79.2元.
(1)求a、b的值;
(2)如果小王家9月份上交水费149.2元,则小王家这个月用水多少吨?
(3)小王家10月份忘记了去交水费,当他11月去交水费时发现两个月一共用水52吨,其中10月份用水超过30吨,一共交水费221.2元,其中包含30元滞纳金,求小王家11月份用水多少吨?(滞纳金:因未能按期缴纳水费,逾期要缴纳的“罚款金额”)
15.一只小船从A港口顺水航行到B港口需8小时,而从B港口逆水返回到A港口需12小时.某日,该小船在早晨8点出发,由A港口顺水航行到B港口时,发现船上一个救生圈在途中掉入水中,于是立即返回寻找救生圈,4小时后找到救生圈.
(1)若A港口到B港口的航程为240千米,求水流速度是每小时多少千米?
(2)若救生圈从A港口漂流到B港口,需要多长时间?
(3)救生圈于何时掉入水中?
参考答案
一、选择题
题号 1 2 3 4 5
答案 C A C B C
二、填空题
6.【解答】解:设小长方形的长为x厘米,宽为y厘米,
x+y=40,
则周长=2(x+y)=80(厘米).
故答案为:80.
7.【解答】解:设这个生态牧场的原有草料a千克,每天生长b千克,每头牛每天可吃c千克草料,
根据题意得:,
解得:,
∴16(天),
∴这些割下来的草所制成的干草可供30头牛吃16天.
故答案为:16.
8.【解答】解:设用x张制作盒身,y张制作盒底,
根据题意,得,
解得,
故答案为:15,20.
9.【解答】解:设有m个﹣1,n个2,则有(520﹣m﹣n)个0,
根据题意得:,
解得:,
∴原式=﹣m+8n=﹣1×300+8×100=500.
故答案为:500.
10.【解答】解:∵第三次购物购买数量最多,总费用最少,
∴第三次购物时商品A,B同时打折.
设商品A的原价为x元,商品B的原价为y元,
依题意得:,
解得:,
∴商品A的原价为90元,商品B的原价为120元.
设第三次购物时,商品A,B打m折销售,
依题意得:(90×9+120×8)1062,
解得:m=6,
∴若商品A,B的折扣相同,则折扣是六折.
故答案为:六.
三、解答题
11.【解答】解:(1)设甲种商品购进x件,乙种商品购进y件,
根据题意得:,
解得:.
答:甲种商品购进80件,乙种商品购进120件;
(2)根据题意得:(50﹣a﹣30)×80+(90×0.8﹣60)×120=2640,
解得:a=5.
答:a的值为5.
12.【解答】解:(1)设每辆A型车有x个座位,每辆B型车有y个座位,
依题意,得:,
解得:.
答:每辆A型车有45个座位,每辆B型车有60个座位;
(2)方案一:只租用A型车时:,故需要租9辆车.
总费用为:1600×9=14400(元),
方案二:只租用B型车时:,故需要租7辆车.
总费用:1850×7=12950(元),
∵14400>12950,
∴选择方案二,只租用B型车时最划算,总费用为12950元.
13.【解答】(1)解:设1个空气净化器销售价格为x元,1个过滤器的销售价格为y元,
由题意得:,
解得:,
答:1个空气净化器销售价格为2200元,1个过滤器销售价格为120元;
(2)解:选择“苏宁”商场购买更合算,理由如下:
在“苏宁”商场购买所需费用为:2200×10+(30﹣10×2)×120=23200(元),
在“国美”商场购买所需费用为:0.95×(2200×10+120×30)=24320(元),
∵24320>23200,
∴选“苏宁”商场购买更合算.
14.【解答】解:(1)由题意得:,
解得:,
∴a=1.8,b=2.8;
(2)由题意可知,1.8+0.9=2.7(元),2.8+0.9=3.7(元),6.00+0.9=6.9(元),
设小王家这个月用水x吨,
由题意得:2.7×17+3.7×(30﹣17)+(x﹣30)×6.9=149.2,
解得:x=38,
答:小王家这个月用水38吨;
(3)设小王家11月份用水y吨,
当y≤17时,2.7y+2.7×17+3.7×13+(52﹣30﹣y)×6.9=221.2﹣30,
解得:y=13;
当17<y<30时,17×2.7+(y﹣17)×3.7+2.7×17+3.7×13+(52﹣30﹣y)×6.9=221.2﹣30,
解得:y=11.75(不符合题意,舍去);
综上所述,小王家11月份用水13吨,
答:小王家11月份用水13吨.
15.【解答】解:(1)设小船在静水中的速度为x千米/小时,水流速度为y千米/小时,由题意得:
,
解得:,
所以水流速度是每小时5千米,
答:水流速度是每小时5千米;
(2)设小船在静水中的速度为a千米/小时,水流速度为b千米/小时,A港口到B港口的距离为s千米,由题意得:
,
解得,
∴救生圈按水流速度由A港口漂流到B港口需要的时间为(小时);
答:救生圈从A港口漂流到B港口所需时间为48小时;
(3)设救生圈在出发t小时掉入水中,由题意得:
,
解得:t=4,
∴8+4=12,
所以救生圈于上午12时掉入水中,
答:救生圈于上午12时掉入水中.
21世纪教育网(www.21cnjy.com)