2.1 二元一次方程 教案

文档属性

名称 2.1 二元一次方程 教案
格式 zip
文件大小 31.7KB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2016-07-30 07:45:49

图片预览

文档简介

第2章
二元一次方程组
2.1
二元一次方程
【教学目标】
知识与技能
1.了解二元一次方程概念;
2.理解二元一次方程的解的含义和解的不唯一性;
3.会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。
过程与方法
1.体会学习二元一次方程的必要性,学会独立思考,体会数学的转化思想和主元思想。
2.初步学会利用二元一次方程来解决实际问题,感受二元一次方程解的不唯一性。获得求二元一次方程解的思路方法。
情感、态度与价值观
1.培养学生发现意识和能力,使其具有强烈的好奇心和求知欲。
2.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育.
【教学重难点】
教学重点:二元一次方程的意义及其二元一次方程解的概念。
教学难点:把一个二元一次方程变形成用关于
( http: / / www.21cnjy.com )一个未知数的代数式表示另一个未知数的形式,其实质就是解一个含有字母系数的方程。
【导学过程】
【知识回顾】
1.找出下面式子中的一元一次方程:
3x+2=-2
2x-5=1
2.判断下列x的值是不是方程2x+1=7-x的解:
(1)x=-2
(2)x=2
【新知探究】
探究一、
二元一次方程的概念
观察书本中提到的0.6x+0.8y=3.8,2a=3b+20这两个方程,并回答下列问题:
①方程两边是不是整式?
②方程中含有几个未知数?
③含有未知数的项的次数是几次?
2.结合以上的特点请你对二元一次方程下一个定义.
含有
且含有

叫做二元一次方程.
3.判断下列式子是否为二元一次方程 为什么?
(1)3x+5=3
(2)
xy+y=12
(3)
(4)
(5)
3a+4b=5
(6)
(7)
探究二、二元一次方程的解的概念
1.
二元一次方程的解的概念
使得二元一次方程两边的值

未知数的
,叫做二元一次方程的
解.
2.检验下列各组数是不是方程2a=3b+20的解.
(1)
(2)
(解题过程写下方)
解:(1)把
代入方程,左边=
,右边=


(2)把
代入方程,左边=
,右边=


3.如果是方程3x+4y=28
的解,那么a的值为多少?
4.有一组数,请写出一个二元一次方程,使得这组数是这个方程的一个解:
探究三、对于方程3x+4y=28
(1)用含x的代数式表示y.
变式:
用含y的代数式表示x.
(2)求当x=-2,0,3时,对应的y的值;
(3)你能写出方程3x+4y=28的三个解吗?
(4)该方程的解有多少个?
再探究:方程3x+4y=28
(1)写出该方程的两个整数解,你发现该方程的整数解有多少个?
(提示:二元一次方程的整数解是指x,y的值都是整数)
(2)自然数解呢?自然数解有:
正整数解呢?正整数解有:
【随堂练习】
1.下列方程中,属于二元一次方程的是


A.-2a=3a+1
B.
C.m-n=3a
D.2x-1=y
2.下列各对数值中,是二元一次方程-x-2y=5的解是


A.
B.
C.
D.
3.写出方程2x-5y=20的两个解:
.
4.把二元一次方程
写成用含x的代数式表示y的形式是
.
5.已知方程
是二元一次方程,
则m=_____;
n
=______.
6.已知
是方程-3x+4y=2a的一个解,则a=______.
7.在方程x+3y=6中,x,y互为相反数,则x=_______,y=_______.
8.方程2m+5n=17的正整数解是
.
【知识梳理】
这堂课你学习了哪些知识?有哪些收获?