1.4.1 平行线的性质 教案

文档属性

名称 1.4.1 平行线的性质 教案
格式 zip
文件大小 217.5KB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2017-02-14 23:17:50

图片预览

文档简介

 1.4.1
平行线的性质
教案
【教学目标】
知识与技能:
掌握平行线的三个特征,体会平行线特征与平行线识别的区别,能运用平行线的识别与特征解决问题.
过程与方法:
经历观察、操作、推理、交流等活动,进一步发展空间观念,加强推理能力和有条理的表达能力,经历探索平行线的特征的过程,掌握平行线的特征并解决一些问题.
情感态度与价值观:
通过操作、观察、合作、交流,进一步感受学习数学的意义,培养学生主动探索、合作以及解决问题的能力.
【教学重难点】
重点:平行线的特征.
难点:平行线的特征与识别法的综合运用.
【教学过程】
一、复习回顾
设计意图:本节课所学知识与前一节课的内容有着密切的联系,两者既有相同之处又有本质的区别.在课的开始以习题化方式复习已学知识,一方面为本节课的学习奠定好基础,另一方面为“对比发现,加深理解”环节作好铺垫.
教师出示问题:如图,直线a、b被直线l所截,在横线上填空:
(1)因为∠1=∠2(已知),所以a∥b   .
(2)因为∠3=∠2(已知),所以a∥b   .
(3)因为∠2+∠4=180°(已知),所以a∥b   .
学生完成后,组内交流结果.
二、情境引入
设计意图:通过提出一个极具趣味性的问题,学生可能通过猜测得到答案,但并不理解其中真正的原因所在,从而激发学生强烈的求知欲和好奇心,引入新课的学习.
教师出示问题:如图,是举世闻名的三星堆考古中发掘出的一个残缺玉片,工作人员从玉片上已经量得∠A=115°,∠D=100°,已知四边形ABCD的AD∥BC,请你求出另外两个角的度数.
学生经过思考,然后小组进行讨论,在教师的引导下得出结论.
三、探究发现
设计意图:教师要通过设计问题是,让学生经历观察、操作、推理、想象等探索过程,获得数学活动的经验,要发散学生思维,让学生尽可能用多种方法来说明自己猜测的正确性,培养学生合情说理的能力.
问题:已知直线a、b被l所截,a∥b.
让学生自己画出符合要求的图形后,提出问题.
(1)合作交流一:请找出图中的同位角,并猜测它们有何关系 你能想办法验证你的猜测吗
(2)合作交流二:请找出图中的内错角,并猜测它们有何关系 你能想办法验证你的猜测吗
(3)合作交流三:图中还有其他位置关系的角吗 它们有何关系呢 说一说你是怎样得到结论的.
以上问题在经过学生独立思考后,再进行小组讨论,互相补充,并派代表回答.
(4)师生共同总结平行线的特征.
四、巩固练习
设计意图:通过练习,落实基础,特别是学生刚刚接触到新的知识时,往往应用起来会感到生疏,或者说对它的感觉仍旧停留在“雾里看花”的状态,这就需要一个过程,也就是对新知识从熟悉到熟练的过程.
教师出示练习:1.完成下列填空:
(1)因为AD∥BC(已知),所以∠B=∠1(     );
(2)因为AB∥CD(已知),所以∠D=∠1(     );
(3)因为AD∥BC(已知),所以∠C+∠D=180°(     ).
2.如图所示,AB∥CD,AD∥BC,分别找出与∠ADC相等或互补的角.
学生完成后集中评议.
  五、课堂小结
设计意图:课堂小结并不只是课堂知识点的回顾,教师要对教学目标的达成情况进行反馈,对相关知识点进行整合,要能够提出明确的具有反思性的问题,让学生有所思,有所得,达到巩固所学知识的目的.
1.平行线的三个特征
2.直线平行的特征与直线平行条件的区别.(1)平行线识别与特征的条件与结论有什么关系
(2)使用平行线识别时是已知   ,说明   ;使用平行线特征时是已知   ,说明   .
师生共同交流总结以上所学的知识.
六、课后作业
1.如图,若AB∥CD,则正确的结论是(  )
A.∠1=∠2+∠3
B.∠1=∠2=∠3
C.∠1+∠2+∠3=180°
D.∠1=∠2+∠3=180°
【答案】A
2.如图,AB∥CD,AC∥BD,试说明∠1=∠3.
【答案】∵AB∥CD(已知),∴∠1=∠2(两直线平等,内错角相等),
又∵AC∥BD(已知),∴∠2=∠3(两直线平行,同位角相等),
∴∠1=∠3(等量代换).
【板书设计】
一、复习回顾
二、情境引入
三、探究发现
四、巩固练习
五、课堂小结
六、课后作业