5.1分式(1)
【教学目标】
1、能根据分式的概念,辨别出分式,理解当分母为零时,分式无意义。
2、能确定分式中字母的取值范围,使分式有意义,或使分式的值为零。
3、会用分式表示实际问题中的数量关系,并会求分式的值,体验分式在实际中的价值。
【教学重点】
分式的有关概念
【教学难点】
理解并能确定分式何时有意义,何时无意义。
【教学过程】
(一)创设情景,引出课题。
情景:让学生观察章书图中的灰熊:提问:
为了调整珍稀动物资源,动物专家在p平方千米的保护区内找到7只灰熊,你能用代数式表示平均每平方千米保护区内有多少只灰熊吗?______
答案为:7÷P=
设计说明:通过创设情景,让学生感受到分式来源于实际,激发学生学习兴趣。
教师再出示一些如:,,
让学生比较说出这些代数式与过去学过的整式有什么不同?(可能学生只讲出有分母,教师应适当的引导。)
设计说明:让学生自己感悟分式与整式的不同,培养学生归纳和表达能力。
(板书)分式:把这些分子、分母都是整式且分母中含有字母的代数式叫做分式。
(二)合作讨论,探求新知
做一做:
1、下列代数式中,哪些是整式?哪些是分式?
,,,,
2、议一议:分式的分母中的字母能取任何实数吗?为什么?
分式中的字母x呢?
总结得出分式的意义:分式中字母的取值不能使分母为零,当分母的值为零时,分式就没有意义。
设计说明:通过与整式比较突出对分式概念的理解。通过讨论,加深学生对分式意义的认识。
(三)应用巩固,掌握新知
例1:对分式
(1)当x取什么数时,分式有意义?
(2)当x取什么值时,分式的值为零?
(3)当x=1时,分式的值是多少?
解:略。
解后反思:(最好由学生主讲)
(1)因为当分母等于零时,分式无意义,所以只有当分母不等于零时,分式有意义。
(2)强调当分子等于零且分母不等于0时分式的值为零。
(3)求分式的值的格式。
设计说明:这是课本中的例题,一则是应用新知,二则是经历解题过程,三则让学生体会解本题的关键。
练一练:(课内练习1)填空:
(1)当______时,分式无意义。
(2)当______时,分式有意义。
(3)当______时,分式值是零。
设计说明:给学生展现身手的机会,加强学生对什么情况下分式有意义,无意义,值为零的理解。
做一做:
例2:甲、乙两人从一条公路上某处出发,同向而行,已知甲每时行a千米,乙每时行b千米,a>b,如果乙提前1时出发,那么甲追上乙需要多少时间?当a=b,b=5时,求甲追上乙所需的时间。
分析:此题是行程问题中的追及问题,小学里学过
追及时间=,本题中把字母代入即可。
第二问题是求分式的值,注意解题格式。
想一想:若取a=5,b=5,分式有意义吗?它们表示的实际意义是什么?
(当a=5,b=5时,分式无意义,它表示甲永远也追不上乙)。
解后反思:在用分式表示实际问题时,字母的取值一定要符合实际。
练一练:(课内练习2)甲、乙两人分别从A、B两地出发,相向而行,已知甲的速度为V1千米/时,乙的速度为V2千米/时,A、B两地相距20千米,若甲先出发1时,问乙出发后几时与甲相遇?
(四)合作探究,延伸提高
探究题:(课内练习)口袋里装有若干个白球和黑球,这些球除颜色外均相同,设黑球的个数为n,白球的个数为(18-m)个,p表示从口袋中摸出一个球,是白球的概率。
(1)你能用关于m、n的代数式来表示p吗?它是哪一类的代数式。
(2)这个代数式在在什么条件下有意义?
(3)p有可能为0吗?有可能为1吗?如果有可能,请解释它的实际意义。
设计说明:通过合作探究,让学生体会到(1)分式的应用很广,(2)在用分式表示实际问题时,字母的取值一定要符合实际。
(五)、清点收获
由教师开出清单,学生进行清点
分式的概念;
什么情况下分式有意义、无意义,分式的值为零。
在实际问题中应注意什么?
设计说明:为了避免学生毫无目的、流于形式的随意讲,由教师根据本节课的教学目标开出清单,可使学生有的放矢。
(六)作业:
5.1分式(2)
【教学目标】
1、通过类比分数的基本性质,说出分式的基本性质,并能用字母表示。
2、理解并掌握分式的基本性质和符号法则。
3、能运用分式的基本性质和符号法则对分式进行变性和约分。
【教学重点】分式的基本性制及利用基本性质进行约分
【教学难点】对符号法则的理解和应用及当分子、分母是多项式时的约分。
【教学过程】
(一)类比引入,探求新知
下面这些式子成立吗?依据是什么?
== ==
待学生讲出分数的基本性质后,再让学生讲出分数的基本性质的内容。
类似地,分式也有以下基本性质:
(板书)分式的分子与分母都乘以(或除以)同一个不等于0的整式,分式的值不变。(并举例对性质中的关键词:都、同一个、不等于0的整式加以理解)
设计说明:分式与分数有许多相似之处,通过类比几个浅显的例子,直观易懂,让学生经历分式的基本性质的得来过程;对几个关键词的理解,目的是让学生更好的掌握和应用性质。
用式子表示为=,=(其中M是不等于零的整式)
(二)应用新知,巩固新知
想一想:下列等式成立吗?为什么?
= ==-
先让学生讨论,待学生回答后,教师引导学生得出结论:(板书)分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
做一做:(课内练习)1、不改变分式的值,把下列各式的分子与分母中的各项子数都化为整数。
(1) (2)
2、不改变分式的值,把下列分式的分子与分母的最高次项的系数都化为正数。
(1) (2)
练一练:课内练习:P172 1、2
设计说明:目的是应用和巩固分式的基本性质及符号法则。
做一做:
例3:化简下列各式:
(1) (2)
教学建议:教师可以先写出一个能约分的分数,让学生化简,并指出化简的实质:是约分(学生应该能讲出的)。对比分数的化简让学生试着完成例3。(教师巡视过程中应对基础弱的学生加以引导)
教师引导学生反思:1、例题化简过程的依据是什么?(分式的基本性质)
2、具体是怎样操作的?(先找出分子和分母中的公因式,再分子分母同时除以公因式)
由此得出:
(板书)分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分。
设计说明:因为前一章刚刚学过因式分解,学生对公因式应该比较熟悉,所以直接让学生完成,给学生探索和尝试的机会。
练一练:(课内练习)3、用分式表示下列各式的商,并约分
(1)4a2b÷(6ab2) (2)-4m3n2÷2(m3n4)
(3)(3x2+x)÷(x2-x) (4)(x2-9)÷(-2x2+6x)
教学建议:板演或投影展示学生的解题过程,评价方式应以学生为主,尤其做错的,应该让学生知道错在哪里,及时改正。
(三)、清点收获
由教师开出清单,学生进行清点
1、分式的基本性质
2、符号法则
3、约分
4、以上知识在应用时应注意什么?
设计说明:为了避免学生毫无目的、流于形式的随意讲,由教师根据本节课的教学目标开出清单,让学生有的放矢。