整式的乘法(提高)巩固练习
一.选择题
1.(2019秋﹒谢家集区期末)若(3x+2)(x+p)=则下列结论正确的是( )
A.m=6 B.n=1 C.p=-2 D.mnp=3
2.(2019秋﹒花都区期末)若□×xy=则□内应填的式子是( )
A.3x+2 B.x+2 C.3xy+2 D.xy+2
3. 如果与-2的和为,1+与-的差为,那么化简后为( )
A. B.
C. D.
4.(2019秋﹒晋江市期末)如图,若用两种方法表示图中阴影部分的面积,则可以得到的代数恒等式是( )
A.(m+a)(m-b)=
B.(m-a)(m+b)=
C.(m-a)(m-b)=
D.(m-a)(m-b)=
5.结果是的式子是( ).
A .(+4)( +2)2 B .(+4)
C .(-4) D .(+4)
6. 已知:,则的值为( )
A.-1 B.0 C. D.1
二.填空题
7. 已知,则=___________.
8.(2015春?无锡校级期中)如果(x+1)(x2﹣2ax+a2)的乘积中不含x2项,则a= .
9. 之积中含项的系数为 .
10.(2016春?莘县期末)若(am+1bn+2)?(a2n﹣1b2n)=a5b3,则m+n的值为 .
11. 观察下列各式:
;
;
;
根据这些式子的规律,归纳得到:
.
12.把展开后得,则
三.解答题
13.(2015春?聊城校级月考)计算
(1)(﹣2a2b)2?(ab)3
(2)已知am=2,an=3,求a2m+3n的值.
14.先阅读后作答:我们已经知道,根据几何图形的面积关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明,例如:
=,就可以用图1的面积关系来说明.
① 根据图2写出一个等式 ;
② 已知等式:=,请你画出一个相应的几何图形加以说明.
15.已知的展开式中不含和项,求的值.
【答案与解析】
一.选择题
1. 【答案】D;
2. 【答案】A;
3. 【答案】A;
【解析】,
=
4. 【答案】D ;
5. 【答案】D;
【解析】
6. 【答案】A;
【解析】两式相减得,将代入得
.
二.填空题
7. 【答案】-8;
【解析】
8. 【答案】;
【解析】解:原式=x3﹣2ax2+a2x+x2﹣2ax+a2
=x3+(1﹣2a)x2+(a2﹣2a)x+a2,
∵不含x2项,
∴1﹣2a=0,
解得a=,
故答案为:.
9. 【答案】12;
【解析】用多项式的乘法展开式子,得项的系数为12.
10.【答案】;
【解析】已知等式整理得:am+2nb3n+2=a5b3,可得,解得:m=,n=,
则m+n=,故答案为:.
11.【答案】;
12.【答案】365;
【解析】∵展开后得
∴当时,,①;
当时,,②
∴①+②=,
∴.
三.解答题
13.【解析】
解:(1)原式=4a4b2?a3b3
=a7b5;
(2)a2m+3n
=(am)2?(an)3
=4×27
=108.
14.【解析】
解:①
②如图所示:
15.【解析】
解:
因为展开式中不含和项,
所以,
解得,.
PAGE