6.2《提取公因式法》教案 (七年级)

文档属性

名称 6.2《提取公因式法》教案 (七年级)
格式 zip
文件大小 20.4KB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2012-02-29 21:24:57

图片预览

文档简介

6.2 提取公因式法
沈磊剑
【教学目标】
一、知识和技能
1、在具体情境中认识公因式
2、通过对具体问题的分析及逆用分配律,使学生理解提取公因式法并能熟练地运用提取公因式法分解因式
二、过程和方法
1、树立学生“化零为整”、“化归”的数学思想,培养学生完整地、辨证地看问题的思想。
2、树立学生全面分析问题,认识问题的思想,提高学生的观察能力,分析问题及逆向思想能力。
三、情感、态度和价值观
在观察、对比、交流和讨论的数学活动中发掘知识,并使学生体验到学习的乐趣和数学的探索性。
【教学重点】
 掌握公因式的概念,会使用提取公因式法进行因式分解,理解添括号法则。
【教学难点】
正确地找出公因式
【教学过程】
一、创设情境,提出问题
如图8-1,一块菜园由两个长方形组成,这些长方形的长分别是3.8m,6.2m,宽都是3.7 m,如何计算这块菜园的面积呢?
列式:3.7×3.8+3.7×6.2 (学生思考后列式)
有简便算法吗
=3.7×(3.8+6.2) =3.7×10=37(m2)
在这一过程中,把3.7换成m,3.8换成a,6.2换成b,于是有:
ma+mb =m(a+b)
利用整式乘法验证: m(a+b)=ma+mb
可能有学生会提出把两个小的长方形补成一个大的长方形,那就更好,或其他的方法,教师都应该及时肯定学生思维中的闪光点.
二、观察分析,探究新知
让学生观察多项式:ma+mb
(让学生说出其特点:都有m,含有两种运算乘法、加法;然后教师规范其特点,从而引出新知。)
各项都含有一个公共的因式m,我们把因式m叫做这个多项式各项的公因式。
注意:公因式是一个多项式中每一项都含有的相同的因式 。
又如:b是多项式ab-b2各项的公因式
2xy是多项式4x2y-6xy2z各项的公因式
让学生说出公因式,学生可能会说是2或者是 x 、 y、2x、2y、2xy等,最后一起确定公因式2xy,让学生初步体会到确定公因式的方法。
三、独立练习,巩固新知
指出下列各多项式中各项的公因式(以抢答的形式)
⑴ax+ay-a (a)
⑵5x2y3-10x2y (5x2y)
⑶24abc-9a2b2 (3ab)
⑷m2n+mn2 (mn)
⑸x(x-y)2-y(x-y) (x-y)
说明:本活动也可以改为寻找公因式游戏如:(根据提供的多项式和整式,寻找出这个多项式的公因式.)
⑴ax+ay-a ⑵5x2y3-10x2y ⑶24abc-9a2b2 ⑷m2n+mn2 ⑸x(x-y)2-y(x-y)
a, x, y 5xy,5x2y3,5x2y 3abc,9ab,3ab mn,m2n,mn2 x(x-y),y(x-y),(x-y)
游戏规则:准备好写有整式和多项式的纸牌,学生分为四组,每组选四个同学游戏,其中3个同学举一组题中的整式牌,第四个根据组员建议寻找出题中的公因式,并说明理由。
显然由定义可知,提取公因式法的关键是如何正确地寻找确定公因式的方法:(可以由学生讨论总结,然后教师进行归纳)
⑴公因式的系数应取各项系数的最大公约数(当系数是整数时)
⑵字母取各项的相同字母,且各字母的指数取最低次幂
根据分配律,可得m(a+b)=ma+mb逆变形,使得到ma+mb的因式分解形式:ma+mb=m(a+b) 这说明多项式ma+mb各项都含有的公因式可提到括号外面,将多项式ma+mb写成m(a+b)的形式,这种分解因式的方法叫做提取公因式法。
   定义:一般地,如果一个多项式的各项含有公因式,那么可把该公因式提取出来进行分解的方法叫做提取公因式法。
四、例题教学,运用新知
把3pq3+15p3q分解因式
通过上面的练习,学生会比较容易地找出公因式,所以这一步还是让学生来操作。然后在黑板上正确规范地书写提取公因式法的步骤。事后总结出提取公因式的一般步骤分两步:第一步:找出公因式;第二步:提取公因式
解:3pq3+15p3q=3pq×q2+3pq×5p2=3pq(q2+5p2)
让学生口答:把2x3+6x2分解因式
说明:⑴应特别强调确定公因式的两个条件,以免漏取.
  ⑵刚开始讲,最好把公因式单独写出。①以显提醒②强调提公因式③强调因式分解
课堂练习:P156T1
把4x2-8ax+2x分解因式(让学生做,教师下去观察并选择有代表性的解答。)
学生可能出现的解答:①4x2-8ax+2x=x(4x-8a+2)②4x2-8ax+2x=2(2x2-4ax+x)
③4x2-8ax+2x=2x(2x-4a) ④4x2-8ax+2x=2x(2x-2a+1)
⑤4x2-8ax+2x=2x(2x-8ax+2x)
教师出示学生的解答,可先让学生自行点评,找出分解因式的错误,而且这些错误都是以后学生练习中的常犯错误,接着由教师总结。这样做比教师直接给出可能会更有效。
分析:找出公因式2x,强调多项式中2x=2x×1 
解:4x2-8ax+2x=2x×2x-2x×4a+2x×1=2x(2x-4a+1)
说明:当多项式的某一项恰好是公因式时,这一项应看成它与1的乘积,提公因式后剩下的应是1。1作为项的系数通常可省略,但如果单独成一项时,它在因式分解时不能漏项。这类题常有学生犯下面的错误:4x2-8ax+2x=2x(2x-4a)
注意:提公因式后的项数应与原多项式的项数一样,这样可检查是否漏项。
把-3ab+6abx-9aby分解因式
学生可能会指出字母的个数不同…(只要学生说得合理,教师应及时给予肯定与鼓励)
他们很快就会发现第一项的系数是“-”的,那么如何转化呢?
应先把它转化成前面的情形,便可以因式分解了,所以应先提负号转化,然后再提公因式,提“-”号时,教师可适当地引出添括号法则,可谓解决“燃尾之急”。
添括号法则:括号前面是“+”号,括到括号里的各项都不变号;括号前面是“-”号,括到括号里的各项都要变号。
课堂练习:P156T 2【巩固添括号法则】
解:-3ab+6abx-9aby=-(3ab-6abx+9aby)=-3ab(1-2x+3y)
说明:通过此例可看出应用提取公因式法分解因式时,应先观察第一项系数的正负,负号时,运用添括号法则要提出负因数,此时一定要把各项变号。由此总结出提取公因式法的一般步骤。见P155
课堂练习:P156T3
探索: 2(a-b)2-a+b能分解因式吗?
还是把问题先交给学生进行小组讨论(四人一小组),鼓励学生进行交流探索。可能有学生会提出好象没有公因式?此时教师可以适当地点拨一下。比如可降低难度改为:2(a-b)2-(a-b),然后启发学生如何转化?从而解决问题。
解:2(a-b)2-a+b= 2(a-b)2-(a-b)=(a-b)[2(a-b)-1]=(a-b)(2a-2b-1)
然后可追加一问:2(a-b)2-(b-a)3呢?
让学生积极思考,讨论回答。
注:n 为偶数 (a-b)n=(b-a)n
n 为奇数 (a-b)n= -(b-a)n
指出:我们知道代数式里的字母可以表示一个数、一个单项式、一个多项式。此多项式的公因式不明显,但仔细观察可发现,利用添括号法则把-a+b可变形成-(a+b),若把(a-b)看作m,原多项式就可以提取公因式a-b。
五、强化训练,掌握新知
把下列各式分解因式
⑴2ax+2ay ⑵x2y-xy2 ⑶a3+2a2-a ⑷2mn-6m2n2+14m3n3 ⑸-ab2c+2a2b-5ac2
⑹x(a+b)-y(a+b) ⑺a(x-a)+b(a-x)-c(x-a)
六、变式训练,扩展新知
A组:将下列各式分解因式
⑴3(a-b)2-6a+6b
⑵-0.01x3y+o.2x2yz2
⑶利用因式分解计算
22×3.145+53×3.145+31.45×2.5
B组: 分解因式xa-xa-1+xa-2
七、整理知识,形成结构
同学们,今天这节课你学会了什么?
在学习过程中你有哪些收获?还有什么疑问?
 八、布置作业:作业本(2)§6.2 课本P157
板书设计